PyTorch Memory Optimization Tips
PyTorchPerformance
PyTorch Memory Optimization Tips
1. Use torch.no_grad() for inference
with torch.no_grad():
output = model(input)
2. Clear cache when switching tasks
torch.cuda.empty_cache()
3. Use gradient checkpointing for large models
from torch.utils.checkpoint import checkpoint
output = checkpoint(model.layer, input)
4. Mixed precision training
from torch.cuda.amp import autocast
with autocast():
output = model(input)